An evaluation of Catalyst's conformational search algorithm with regard to conformational diversity and conformational energy penalties

Anders Poulsen, Dept. of Computational Chemistry

Medicinal Chemistry Research H. Lundbeck A/S Ottiliavej 9 DK-2500 Copenhagen-Valby

Conformational energy

 $\Delta G_{solv}(\text{Receptor}) + \Delta G_{conf}(\text{Ligand}) + \Delta G_{conf}(\text{Receptor}) + \Delta G_{inter}$

The aim of Catalysts conformation generation module is: "Comprehensive coverage of the lowenergy conformational space" <u>http://www.accelrys.com/</u>

Catalyst searches feature space. More diverse sampling than other conformational search algorithms.

Selective NK1 and NK2 antagonists. Dual NK1 and NK2 antagonists. Varying degree of flexibility

Energy of Global energy minima calculated by other force fields

Lundbeck

Catalyst Conf. Model Global Minima Export MacroModel Minimise Energy

Compound	Catalyst	MM3*	MM3*	MMFFs	MMFFs	MM3*	MM3*	MMFFs	MMFFs	_
	Ivietnod		GB/SA		GB/SA	Constr	GB/SA Constr	Constr	GB/SA Constr	
1	BEST	37.5	24.7	39.1	20.2	41.0	33.0	50.6	39.0	_
1	FAST	26.3	9.6	37.6	4.8	29.9	16.8	39.7	14.6	Rest lower in
2	BEST	13.6	8.2	22.3	10.0	14.1	10.5	22.6	17.9	
2	FAST	28.6	13.4	37.9	4.5	30.6	16.8	40.5	8.8	energy than
3	BEST	16.7	6.1	15.1	3.2	28.4	18.4	44.8	33.4	Fast
3	FAST	34.3	24.8	57.6	24.6	61.9	60.5	70.0	55.4	Iust
4	BEST	11.4	4.5	33.5	14.7	12.3	6.3	39.4	18.1	
4	FAST	18.1	10.7	21.3	5.6	32.5	18.0	51.2	21.9	O_{n1} fully
5	BEST	28.5	23.0	13.7	1.5	30.8	25.0	16.0	3.2	Only fully
5	FAST	28.2	20.6	24.2	6.7	33.5	25.8	31.9	14.5	minimised
6	BEST	4.9	9.0	17.1	10.3	8.6	13.8	27.6	22.8	ature ature a larre in
6	FAST	24.6	37.4	61.4	63.0	71.1	81.3	86.7	90.3	structures low in
7	BEST	0.3	1.0	0.1	0.3	48.0	34.2	24.4	4.9	energy
7	FAST	0.1	1.0	4.5	0.3	26.9	18.9	17.1	6.6	-11-18J
8	BEST	46.0	33.0	49.0	32.5	40.0	32.9	103.9	81.1	
8	FAST	31.7	14.8	28.6	10.1	18.9	13.2	33.2	20.6	_
Average	BEST	19.9	13.7	23.7	11.6	27.9	21.8	41.2	27.6	
Average	FAST	24.0	16.5	34.1	15.0	38.2	31.4	46.3	29.1	

Within 4.2 kJ
Within 8.4 kJ
Within 12.6 kJ

Structure of Global energy minima, minimised by other force fields

Catalyst Conf. Model Global Minima Export MacroModel Minimise

Compound	Catalyst	MM3*	MM3*	MMFFs	MMFFs	MM3*	MM3*	MMFFs	MMFF
	Method		GB/SA		GB/SA		GB/SA		GB/SA
						Constr.	Constr.	Constr.	Constr
1	BEST	1.259	1.016	0.899	0.747	0.139	0.140	0.139	0.139
1	FAST	0.539	0.506	0.473	0.413	0.124	0.124	0.131	0.131
2	BEST	0.355	0.398	0.405	0.417	0.129	0.128	0.134	0.128
2	FAST	0.368	0.338	0.484	0.373	0.130	0.126	0.130	0.131
3	BEST	0.800	0.886	1.077	1.086	0.147	0.147	0.143	0.144
3	FAST	1.371	1.107	0.581	1.018	0.130	0.132	0.146	0.147
4	BEST	0.409	0.407	0.594	0.476	0.127	0.139	0.142	0.139
4	FAST	0.648	0.699	0.596	0.560	0.139	0.138	0.139	0.138
5	BEST	0.580	0.523	0.579	0.468	0.126	0.125	0.127	0.124
5	FAST	0.736	0.660	0.362	0.339	0.139	0.135	0.132	0.134
6	BEST	0.404	0.454	0.541	0.569	0.129	0.130	0.142	0.141
6	FAST	1.797	1.797	0.680	0.723	0.143	0.144	0.149	0.150
7	BEST	0.905	0.875	0.920	0.774	0.104	0.106	0.124	0.125
7	FAST	0.607	0.567	0.613	0.504	0.122	0.121	0.123	0.123
8	BEST	0.519	0.579	2.598	2.547	0.148	0.145	0.155	0.155
8	FAST	0.527	0.841	0.652	0.716	0.131	0.131	0.148	0.147
Average	BEST	0.654	0.642	0.952	0.886	0.131	0.133	0.138	0.137
Average	FAST	0.824	0.814	0.555	0.581	0.132	0.131	0.137	0.138

Most of catalysts global energy minima changes conformation upon minimization

RMS

Far from local minima High conformational energy

Conf Model

Average energy of ensemble calculated by other force fields

Minimice

Catalys	st $\frac{\text{com}}{}$	WIGUE	-	Enser	nble			Macro	oMode			- Energy
Compound	Catalyst Method	MM3*	MM3* GB/SA	MMFFs	MMFFs GB/SA	MM3* Constr.	MM3* GB/SA Constr.	MMFFs Constr.	MMFFs GB/SA Constr.	Catalyst	Number of Conf.	Generally within the
1	BEST	40.4	35.2	39.0	28.9	66.8	62.1	77.9	68.8	47.8	192	standard 84kJ energy
1	FAST	37.2	29.2	40.7	24.8	53.7	45.5	66.3	51.1	48.3	199	limit. Fast and Best
2	BEST	27.7	25.0	33.5	20.4	53.1	50.0	73.7	62.3	45.3	183	aqual in anarou
2	FAST	33.8	29.0	42.0	24.8	49.7	45.1	65.0	49.1	55.3	100	equal in energy.
3	BEST	39.1	35.0	39.6	25.6	56.4	52.1	74.7	65.7	44.5	107	
3	FAST	45.3	38.3	54.0	32.3	78.1	71.6	89.8	70.4	49.8	225	
4	BEST	25.7	22.5	41.9	33.9	49.0	45.3	81.6	70.7	43.7	230	
4	FAST	36.1	32.0	44.3	36.7	55.4	51.8	77.0	65.0	41.6	225	
5	BEST	31.5	26.7	27.5	15.2	54.9	48.8	60.7	46.8	49.7	71	Average energy
5	FAST	27.6	22.7	15.8	7.0	40.4	35.4	38.9	29.3	25.3	10	comparable to
6	BEST	30.5	38.4	45.1	44.4	59.3	66.6	79.0	75.4	54.2	56	Clabal minima
6	FAST	24.7	35.8	52.6	58.1	71.1	81.3	93.0	97.4	44.2	5	Global minima
7	BEST	10.8	3.3	9.7	2.8	41.9	33.1	47.1	27.7	32.8	140	
7	FAST	11.5	4.7	15.2	3.6	42.3	36.2	40.7	25.3	29.7	67	
8	BEST	54.0	41.7	66.2	47.3	76.9	66.2	125.6	96.6	41.1	202	
8	FAST	55.8	42.4	72.6	46.7	65.3	53.8	110.8	77.0	47.2	216	_
Average	BEST	32.5	28.5	37.8	27.3	57.3	53.0	77.5	64.3	44.9	147.6	
Average	FAST	34.0	29.3	42.2	29.2	57.0	52.6	72.7	58.1	42.7	130.9	

Evnort

Below Glob. min.
Within 4.2 kJ/mol of glob. min.
Within 8.4 kJ/mol of glob. min.

Energy of ensemble calculated by various force fields

Energy of Global energy minima found by other force fields

MacroModel Conf. Model Global Minima Export Catalyst 3D Minimize Energy

Compound	Catalyst Fast	MM3*	MM3* GB/SA	MMFFs	MMFFs GB/SA
1	13.7	4.2	-2.6	14.6	9.9
2	16.4	18.4	1.8	25.7	12.8
3	56.6	18.1	-0.5	65.4	37.4
4	9.5	6.2	2.0	5.5	7.5
5	7.6	-2.3	-2.3	-0.4	0.1
6	63.4	16.9	-5.7	0.4	1.0
7	2.6	2.5	2.5	1.7	2.4
8	-4.8	3.2	1.9	5.6	6.9
Average	20.6	8.4	-0.4	14.8	9.8

Catalysts force field are not comparable to MM3* and MMFFs

Catalyst does not find the global minima in its own forcefield

Structure of Global energy minima found by other force fields

MacroModel Conf. Model	Global Minima –	Export	Catalyst	Fast Fit	RMS

	Catalyst Best search							Catalyst Fast search			
Compound	MM3*	MM3*	MMFFs	MMFFs	Catalyst	MM3*	MM3*	MMFFs	MMFFs	Catalyst	
		GB/SA		GB/SA	Fast		GB/SA		GB/SA	Best	
1	1.440	1.657	1.323	1.694	1.700	1.203	1.633	1.358	1.633	1.977	
2	1.494	1.594	1.121	1.360	1.287	1.871	1.970	0.938	1.358	1.505	
3	1.945	1.935	1.820	1.985	1.060	2.477	1.231	1.697	1.773	1.346	
4	1.395	0.751	0.723	1.005	1.601	1.553	1.364	1.648	1.716	1.606	
5	0.767	0.754	1.306	1.307	0.987	1.289	1.295	1.260	1.237	1.361	
6	0.736	0.409	0.577	0.592	0.824	1.657	1.551	1.714	1.709	1.559	
7	0.547	1.065	0.482	1.201	0.197	0.759	0.877	0.597	0.666	0.483	
8	1.942	1.909	1.548	1.889	1.952	1.685	1.776	1.182	1.802	2.446	
Average	1.283	1.259	1.113	1.379	1.201	1.562	1.462	1.299	1.487	1.535	

Trend: Fast search gives higher RMS than Best search

Global energy minima found by other methods generally not precent in catalysts ensemble

Energy limits for conformational search

The mean energies of the poled set were somewhat higher than those of the unpoled set, consistent with our goal of covering conformational space with respect to a user-defined energy threshold rather than just elucidating local minima.

A. Smellie et al., J. Comp. Chem., Vol. 16, No. 2, 171-187 (1995)

Energy limits for conformational search

Catalyst —	onf. Model	- Ensem	ble $\underline{-}^{E}$	$\xrightarrow{\text{xport}} N$	lacroMode	el <u>Minimise</u>	→ Energ	зу
		Catalyst Fa	ast search			Catalyst B	est search	
Energy	MMFFs	MMSFFs	Catalyst	Number	MMFFs	MMSFFs	Catalyst	Number
limmit		Constr		of conf.		Constr		of conf.
2.1	15.0	31.2	0.2	2	20.4	31.6	0.6	2
4.2	14.7	32.5	1.3	2	26.1	32.7	1.3	3
8.4	41.1	51.6	2.8	2	34.9	40.9	4.2	7
12.6	41.1	43.2	1.4	2	26.7	34.6	7.7	9
16.8	30.2	44.0	9.7	19	29.7	36.9	8.2	10
21	31.7	45.4	14.5	77	27.6	36	9.6	12
42	32.0	51.8	22.6	74	39.2	54.3	19.3	44
63	32.1	55.1	37.7	185	39.5	69.5	34.1	134
84	34.4	60.1	43.6	236	34.9	74.9	43.8	197

Low E limit insufficient coverage of conf. space

The 7 membered ring can bend to the left or right of the tricyclic ring system

Catalyst Best Search

Right Method Left Catalyst Best 3 137 Catalyst Fast 24 43 29 **MMFFs** 24 MMFFs+GB/SA 30 47 8 MM3* 9 MM3*+GB/SA 9 7

CF.

CF

0=

Method	Left	Center	Right	
Catalyst Best	94%	2.6%	3.5%	——————————————————————————————————————
Catalyst Fast	15%	85%	0%	N N
MMFFs				
MMFFs+GB/SA	500/	00/	500/	
MM3*	~30%	U%0	~30%	Lundbeck X
MM3*+GB/SA				0
	- ·	· · · · · · · · · · · · · · · · · · ·		3

Catalyst Method	Fast	Best	_
Axial Chair	0 (0%)	2 (0.8%)	
Axial Twist	0 (0%)	40 (17%)	
Equatorial	49 (100%)	188 (81%)	
No. Conformations	49	230	
			4 Indeed

Catalyst Method	Fast	Best
Chair Chair	0 (0%)	3 (5.3%)
Unexpected	5 (100%)	53 (94.6%)
No. Conformations	5	56

Catalyst Method	Fast	Best
Chair Chair Equatorial substituents	36 (17%)	4 (1.8%)
Chair Twist Equatorial substituents	9 (4.2%)	6 (2.7%)
Non Extended Conformations	171 (79.2%)	212 (95.5%)
No. conformations	216	222

5 out of 8 conformational models generated by Catalyst are not diverse

Diversity in feature space is not the same as diversity in conformational space

Poling: Promoting Conformational Variation A. Smellie et al., J. Comp. Chem., Vol. 16, No. 2, 171-187 (1995)

Poling: Preventing Conformational Variation

- Most conformations generated by Catalyst are far from a local minima and high in energy.
- The rank ordering of the conformational model is arbitrary.
- Diverse sampling of feature space does not always result in a diverse conformational model. The conformational diversity is often seen in distortions of low energy conformations. Especially for rings, high energy conformations are overrepresented in the conformational model. Sometimes so much that no low energy conformation is found for the ring system.

The high energy conformations are just noise that results in false positives when doing a database search. This noise is dangerous when doing automatic hypothesis generation, since it leads to wrong models.

Catalyst is a good tool for 3D database search. Substituting the conformational search algorithm for a Monte Carlo or Low mode search would greatly enhance the quality of the program.

