An evaluation of Catalyst's conformational search algorithm with regard to conformational diversity and conformational energy penalties

The Royal Danish School of Pharmacy

Anders Poulsen

H. Lundbeck A/S

Danish Academy of Technical Sciences

Conformational energy

Conformational energies calculated by Catalyst compared	d to experiment	tal values, in kcal/	mol.	_
Rotational Barrier	Catalyst	Experimental	Difference	
Ethane	2.74	2.878	-0.1	
Propene, methyl rotation	0.82^{a}	1.98	-1.2	Gundertofte et
Isoprene, methyl rotation	0.96	2.71	-1.8	al., J. Comp.
Ethylbenzene, ethyl rotation	1.57	1.7	-0.1	Chem. 17 (1996)
2,4,6-Trimethylisopropylbenzene, isopropyl rotation	11.43	12.8	-1.4	429-449
Styrene	7.79	1.78	6.0*	
Conformational energies hydrocarbons	Catalyst	Experimental	Difference	_
Butane, g-a	1.02	0.97	0.1	
2,3-Dimethylbutane, g-a	0.18	0.05	0.1	
1,3,5-Trineopentylbenzene, twosyn-allsyn	0.54	1.04	-0.5	_
Conformational energies oxygen containing	Catalyst	Experimental	Difference	
Methylacetate, E-Z	0.75	8	-7.3*	
2-Butanone, skew-ecl	-0.11	2.0	-2.1	
Ethylmethylether, g-a	1.38	1.5	-0.1	
2-Methoxy-THP, eq-ax	0.87	1.0	-0.1	
Ethanol, (C-O) g-a	-0.06	0.7	-0.8	
Propanol, (C-C) g-a	0.68	-0.3	1.0	_
Conformational energies nitrogen containing	Catalyst	Experimental	Difference	_
Ethylamine, (C-N) g-a	-0.09	0.7	-0.8	
N-Methylacetamide, E-Z	-2.21	2.4	-4.6*	
N-Methylpiperidine, ax-eq	0.62	3.2	-2.6	
2-Methylpiperidine, ax-eq	1.26	2.5	-1.2	1
3-Methylpiperidine, ax-eq	1.38	1.6	-0.2	
4-Methylpiperidine, ax-eq	1.87	1.93	-0.1 🔪	S*BIO

Conformational energiescyclohexanes	Catalyst	Experimental	Difference	
Cyclohexane, twb-ch	6.16	5.5	0.7	
Phenylcyclohexane, ax-eq	2.92	2.87	0.0	Gundertofte et
Methylcyclohexane, ax-eq	1.88	1.75	0.1	al., J. Comp.
Aminocyclohexane, ax-eq	0.89	1.49	-0.6	Cham $17(1006)$
N,N-Dimethylaminocyclohexane, ax-eq	0.80	1.31	-0.5	Cileiii. 17 (1990)
Trans-1,2-Dimethylcyclohexane, axax-eqeq	2.42	2.58	-0.2	429-449
cic-1,2-Dimethylcyclohexane, axax-eqeq	5.08	5.5	-0.4	_
Conformational energies of haloalkanes	Catalyst	Experimental	Difference	_
FCH2CH2F, g-a	0.12	-0.8	0.9	
PrCl, g-a	0.43	-0.36	0.8	
ClCH2CH2Cl, g-a	0.78	1.05	-0.3	
ClCH2CH2CH2Cl, ga-gg	-1.56	1.1	-2.7	
CICH2CH2CH2Cl, aa-gg	-1.96	1.5	-3.5	
Conformational energies of halocyclohexanes	Catalyst	Experimental	Difference	_
F, ax-eq	0.19	0.16	0.0	
Cl, ax-eq	0.63	0.5	0.1	
Br, ax-eq	0.88	0.7	0.2	
Trans-1,2-diF, axax-eqeq	0.28	0.59	-0.3	
Trans-1,2-diCl, axax-eqeq	0.31	-0.93	1.2	
Trans-1,2-diBr, axax-eqeq	0.07	-1.5	1.6	
Trans-1,4-diF, axax-eqeq	0.37	-1.14	1.5	
Trans-1,4-diCl, axax-eqeq	1.28	-0.8	2.1	
Trans-1,4-diBr, axax-eqeq	1.79	-0.88	2.7	
Conformational energies of conjugated compounds	Catalyst	Experimental	Difference	1
Butadiene, s-cic-s-trans	1.91	2.5	-0.6	•
Acrolein, s-cic-s-trans	3.31	1.7	1.6	

Average absolute errors, in kcal/mol.

Compound class	Cotolyst	MM3*	MMFFs 93	Dlank
Compound class	Catalyst	Macromodel 4.0	Ceriuc 2	DIAIIK
Rotational barriers	1.76	1.00	0.35	3.97
Hydrocarbons	0.23	0.36	0.39	0.69
Oxygen compounds	1.89	0.50	0.52	2.34
Nitrogen compounds	1.58	0.38	0.43	2.05
Cyclohexanes	0.36	0.43	0.71	3.00
Haloalkanes	1.62	0.72	0.39	0.96
Halocyclohexanes	1.08	0.69	0.68	0.80
Conjugated compounds	1.10	0.46	0.19	2.10
Total	1.20	0.60	0.51	2.03
Total excluding Rotational barriers	1.12	0.53	0.53	1.73
Rotational barriers*	0.91	1.00	0.35	3.97
Oxygen compounds*	0.82	0.50	0.52	2.34
Nitrogen compounds*	0.98	0.38	0.43	2.05
Total*	0.89	0.60	0.51	2.03
Total excluding Rotational barriers*	0.88	0.53	0.53	1.73

* Excluding largest difference from catalyst result

Gundertofte et al., J. Comp. Chem. 17 (1996) 429-449

Catalyst

The primary aims of Catalysts conformation generation module are 1: Speed. 2: To explore compounds in terms of all the energetically accessible conformations available under physiological conditions http://www.accelrys.com/

Catalyst searches feature space. More diverse sampling than other conformational search algorithms.

Overview

Overview

Compounds

Selective NK1 and NK2 antagonists. Dual NK1 and NK2 antagonists. Varying degree of flexibility

Energy of Global energy minima calculated by other force fields

Catalyst	Conf. Model	l → Gl	obal Mir	nima —	Export	 Macro 	oModel	Minimis	e E	Energy
Compound	Catalyst Method	MM3*	MM3* GB/SA	MMFFs	MMFFs GB/SA	MM3*	MM3* GB/SA	MMFFs	MMFFs GB/SA	-
						Constr.	Constr.	Constr.	Constr.	_
1	BEST	37.5	24.7	39.1	20.2	41.0	33.0	50.6	39.0	
1	FAST	26.3	9.6	37.6	4.8	29.9	16.8	39.7	14.6	Best lower in
2	BEST	13.6	8.2	22.3	10.0	14.1	10.5	22.6	17.9	
2	FAST	28.6	13.4	37.9	4.5	30.6	16.8	40.5	8.8	energy than
3	BEST	16.7	6.1	15.1	3.2	28.4	18.4	44.8	33.4	Fast
3	FAST	34.3	24.8	57.6	24.6	61.9	60.5	70.0	55.4	1 dSt
4	BEST	11.4	4.5	33.5	14.7	12.3	6.3	39.4	18.1	
4	FAST	18.1	10.7	21.3	5.6	32.5	18.0	51.2	21.9	
5	BEST	28.5	23.0	13.7	1.5	30.8	25.0	16.0	3.2	Only fully
5	FAST	28.2	20.6	24.2	6.7	33.5	25.8	31.9	14.5	minimised
6	BEST	4.9	9.0	17.1	10.3	8.6	13.8	27.6	22.8	mmmsed
6	FAST	24.6	37.4	61.4	63.0	71.1	81.3	86.7	90.3	structures low in
7	BEST	0.3	1.0	0.1	0.3	48.0	34.2	24.4	4.9	energy
7	FAST	0.1	1.0	4.5	0.3	26.9	18.9	17.1	6.6	chergy
8	BEST	46.0	33.0	49.0	32.5	40.0	32.9	103.9	81.1	
8	FAST	31.7	14.8	28.6	10.1	18.9	13.2	33.2	20.6	
Average	BEST	19.9	13.7	23.7	11.6	27.9	21.8	41.2	27.6	-
Average	FAST	24.0	16.5	34.1	15.0	38.2	31.4	46.3	29.1	_

Within 4.2 kJ
Within 8.4 kJ
Within 12.6 kJ

Structure of Global energy minima minimised by other force fields

Compound	Catalyst	MM3*	MM3*	MMFFs	MMFFs	MM3*	MM3*	MMFFs	MMFFs
	Method		GB/SA		GB/SA		GB/SA		GB/SA
						Constr.	Constr.	Constr.	Constr.
1	BEST	1.259	1.016	0.899	0.747	0.139	0.140	0.139	0.139
1	FAST	0.539	0.506	0.473	0.413	0.124	0.124	0.131	0.131
2	BEST	0.355	0.398	0.405	0.417	0.129	0.128	0.134	0.128
2	FAST	0.368	0.338	0.484	0.373	0.130	0.126	0.130	0.131
3	BEST	0.800	0.886	1.077	1.086	0.147	0.147	0.143	0.144
3	FAST	1.371	1.107	0.581	1.018	0.130	0.132	0.146	0.147
4	BEST	0.409	0.407	0.594	0.476	0.127	0.139	0.142	0.139
4	FAST	0.648	0.699	0.596	0.560	0.139	0.138	0.139	0.138
5	BEST	0.580	0.523	0.579	0.468	0.126	0.125	0.127	0.124
5	FAST	0.736	0.660	0.362	0.339	0.139	0.135	0.132	0.134
6	BEST	0.404	0.454	0.541	0.569	0.129	0.130	0.142	0.141
6	FAST	1.797	1.797	0.680	0.723	0.143	0.144	0.149	0.150
7	BEST	0.905	0.875	0.920	0.774	0.104	0.106	0.124	0.125
7	FAST	0.607	0.567	0.613	0.504	0.122	0.121	0.123	0.123
8	BEST	0.519	0.579	2.598	2.547	0.148	0.145	0.155	0.155
8	FAST	0.527	0.841	0.652	0.716	0.131	0.131	0.148	0.147
Average	BEST	0.654	0.642	0.952	0.886	0.131	0.133	0.138	0.137
Average	FAST	0.824	0.814	0.555	0.581	0.132	0.131	0.137	0.138

Catalyst Conf. Model
Global Minima
Export
MacroModel
Minimise

Most of catalysts global energy minima changes conformation upon minimization

RMS

Far from local minima High conformational energy

Within 0.5 Å

Average energy of ensemble calculated by other force fields

Catalys	st <u>Conf.</u>	Model	[-►	Enser	nble	Ex	port	Macro	oMode	l <u>Mini</u>	mise 🕨	Energy
Compound	Catalyst Method	MM3*	MM3* GB/SA	MMFFs	MMFFs GB/SA	MM3* Constr.	MM3* GB/SA Constr.	MMFFs Constr.	MMFFs GB/SA Constr.	Catalyst	Number of Conf.	Generally within the
1	BEST	40.4	35.2	39.0	28.9	66.8	62.1	77.9	68.8	47.8	192	standard 84KJ energy
1	FAST	37.2	29.2	40.7	24.8	53.7	45.5	66.3	51.1	48.3	199	limit. Fast and Best
2	BEST	27.7	25.0	33.5	20.4	53.1	50.0	73.7	62.3	45.3	183	equal in energy
2	FAST	33.8	29.0	42.0	24.8	49.7	45.1	65.0	49.1	55.3	100	equal in energy.
3	BEST	39.1	35.0	39.6	25.6	56.4	52.1	74.7	65.7	44.5	107	
3	FAST	45.3	38.3	54.0	32.3	78.1	71.6	89.8	70.4	49.8	225	
4	BEST	25.7	22.5	41.9	33.9	49.0	45.3	81.6	70.7	43.7	230	
4	FAST	36.1	32.0	44.3	36.7	55.4	51.8	77.0	65.0	41.6	225	
5	BEST	31.5	26.7	27.5	15.2	54.9	48.8	60.7	46.8	49.7	71	Average energy
5	FAST	27.6	22.7	15.8	7.0	40.4	35.4	38.9	29.3	25.3	10	comparable to
6	BEST	30.5	38.4	45.1	44.4	59.3	66.6	79.0	75.4	54.2	56	Clabel minime
6	FAST	24.7	35.8	52.6	58.1	71.1	81.3	93.0	97.4	44.2	5	Global minima
7	BEST	10.8	3.3	9.7	2.8	41.9	33.1	47.1	27.7	32.8	140	
7	FAST	11.5	4.7	15.2	3.6	42.3	36.2	40.7	25.3	29.7	67	
8	BEST	54.0	41.7	66.2	47.3	76.9	66.2	125.6	96.6	41.1	202	
8	FAST	55.8	42.4	72.6	46.7	65.3	53.8	110.8	77.0	47.2	216	
Average	BEST	32.5	28.5	37.8	27.3	57.3	53.0	77.5	64.3	44.9	147.6	
Average	FAST	34.0	29.3	42.2	29.2	57.0	52.6	72.7	58.1	42.7	130.9	

Below Glob. min.
Within 4.2 kJ/mol of glob. min.
Within 8.4 kJ/mol of glob. min.

Energy of ensemble calculated by various force fields

Structure of Global energy minima found by other force fields

MacroMod	el ^{Conf. M}	^{lodel} → G	lobal Mi	nima —	xport	Catalyst	Fast	Fit ►	RMS	
		Catal	yst Best s	earch			Catal	yst Fast s	earch	
Compound	MM3*	MM3*	MMFFs	MMFFs	Catalyst	MM3*	MM3*	MMFFs	MMFFs	Catalyst
		GB/SA		GB/SA	Fast		GB/SA		GB/SA	Best
1	1.440	1.657	1.323	1.694	1.700	1.203	1.633	1.358	1.633	1.977
2	1.494	1.594	1.121	1.360	1.287	1.871	1.970	0.938	1.358	1.505
3	1.945	1.935	1.820	1.985	1.060	2.477	1.231	1.697	1.773	1.346
4	1.395	0.751	0.723	1.005	1.601	1.553	1.364	1.648	1.716	1.606
5	0.767	0.754	1.306	1.307	0.987	1.289	1.295	1.260	1.237	1.361
6	0.736	0.409	0.577	0.592	0.824	1.657	1.551	1.714	1.709	1.559
7	0.547	1.065	0.482	1.201	0.197	0.759	0.877	0.597	0.666	0.483
8	1.942	1.909	1.548	1.889	1.952	1.685	1.776	1.182	1.802	2.446
Average	1.283	1.259	1.113	1.379	1.201	1.562	1.462	1.299	1.487	1.535

Trend: Fast search gives higher RMS than Best search

Global energy minima found by other methods generally not precent in catalysts ensemble

Within 0.5 Å
Within 1 Å

The mean energies of the poled set were somewhat higher than those of the unpoled set, consistent with our goal of covering conformational space with respect to a user-defined energy threshold rather than just elucidating local minima.

A. Smellie et al., J. Comp. Chem., Vol. 16, No. 2, 171-187 (1995)

Catalyst <u>Ca</u>	onf. Model	Ensem	ble <u>E</u>	$\xrightarrow{\text{xport}} N$	lacroMode	el Minimise	Energ	gy
		Catalyst Fa	ast search			Catalyst B	est search	
Energy	MMFFs	MMSFFs	Catalyst	Number	MMFFs	MMSFFs	Catalyst	Number
limmit		Constr		of conf.		Constr		of conf.
2.1	15.0	31.2	0.2	2	20.4	31.6	0.6	2
4.2	14.7	32.5	1.3	2	26.1	32.7	1.3	3
8.4	41.1	51.6	2.8	2	34.9	40.9	4.2	7
12.6	41.1	43.2	1.4	2	26.7	34.6	7.7	9
16.8	30.2	44.0	9.7	19	29.7	36.9	8.2	10
21	31.7	45.4	14.5	77	27.6	36	9.6	12
42	32.0	51.8	22.6	74	39.2	54.3	19.3	44
63	32.1	55.1	37.7	185	39.5	69.5	34.1	134
84	34.4	60.1	43.6	236	34.9	74.9	43.8	197

Low E limit insufficient coverage of conf. space

The 7 membered ring can bend to the left or right of the tricyclic ring system

Catalyst Best Search

The only 3 conformations with the 7 membered ring bending right

Method	Right	Left
Catalyst Best	3	137
Catalyst Fast	24	43
MMFFs	29	24
MMFFs+GB/SA	30	47
MM3*	9	8
MM3*+GB/SA	9	7

CF

Method	Left	Center	Right	
Catalyst Best	94%	2.6%	3.5%	ö
Catalyst Fast	15%	85%	0%	N N
MMFFs				
MMFFs+GB/SA		0%		HN
MM3*	~30%	070	~30%	
MM3*+GB/SA				S*BIC
				3

Catalyst Method	Fast	Best	_
Axial Chair	0 (0%)	2 (0.8%)	-
Axial Twist	0 (0%)	40 (17%)	
Equatorial	49 (100%)	188 (81%)	S ^r →
No. Conformations	49	230	
			A S*BI

Catalyst Method	Fast	Best
Chair Chair	0 (0%)	3 (5.3%)
Unexpected	5 (100%)	53 (94.6%)
No. Conformations	5	56

Catalyst Method	Fast	Best
Chair Chair Equatorial substituents	36 (17%)	4 (1.8%)
Chair Twist Equatorial substituents	9 (4.2%)	6 (2.7%)
Non Extended Conformations	171 (79.2%)	212 (95.5%)
No. conformations	216	222

6 out of 8 conformational models generated by Catalyst are not diverse

Diversity in feature space is not the same as diversity in conformational space

Poling: Promoting Conformational Variation A. Smellie et al., J. Comp. Chem., Vol. 16, No. 2, 171-187 (1995)

Poling: Preventing Conformational Variation

The primary aim of Catalysts conformation generation module is to explore compounds in terms of all the energetically accessible conformations available under physiological conditions.

The present work clearly demonstrates that this is not achieved, unless physiological conditions includes Dante's version of Hell and crematorium ovens

The force Field performance are comparable to Tripos 3.0 and better than UFF 1.01, Dreiding 2.21 and CVFF

Significantly better if problem with Cis/Trans and halocarbons are fixed

Most conformations generated by Catalyst are far from a local minima and high in energy.

The rank ordering of the conformational model is more or less arbitrary. (Conformations are two high in energy that it makes sense to use a force field to calculate a energy)

Diverse sampling of feature space does not always result in a diverse conformational model. (The diversity that we want to see are not observed)

The conformational diversity is often seen in distortions of low energy conformations. (The diversity that we observe are not the diversity that we want to see)

Especially for rings, high energy conformations are over represented in the conformational model. Sometimes so much that no low energy conformation is found for the ring system.

The high energy conformations are just noise that results in false positives when doing a database search.

The missing low energy conformations results in false negatives.

This noise and missing low energy conformations are dangerous when doing automatic hypothesis generation, since it leads to wrong models.

Catalyst is a good tool for 3D database search.

Substituting the conformational search algorithm for a fragmented algorithm without poling would greatly enhance the quality of the program.

Acknowledgement

Financial support for my Ph.D. Project:

Danish Academy of Technical Sciences

Ardent support of free speech:

